Basics of Complex Numbers (I)

1. General

- $i \equiv \sqrt{-1}$, so $i^{2}=-1, i^{3}=-i, i^{4}=1$ and then it starts over again.
- Any complex number z can be written as the sum of a real part and an imaginary part:

$$
z=[\operatorname{Re} z]+i[\operatorname{Im} z],
$$

where the numbers or variables in the []'s are real. So $z=x+y i$ with x and y real is in this form but $w=1 /(a+b i)$ is not (see "Rationalizing" below). Thus, $\operatorname{Im} z=y$, but $\operatorname{Re} w \neq 1 / a$.

- Complex Conjugate: The complex conjugate of z, which is written as z^{*}, is found by changing the sign of every i in z :

$$
z^{*}=[\operatorname{Re} z]-i[\operatorname{Im} z] \quad \text { so if } z=\frac{1}{a+b i}, \text { then } z^{*}=\frac{1}{a-b i} .
$$

Note: There may be "hidden" i 's in the variables; if a is a complex number, then $z^{*}=1 /\left(a^{*}-b i\right)$.

- Magnitude: The magnitude squared of a complex number z is:

$$
z z^{*} \equiv|z|^{2}=[\operatorname{Re} z]^{2}-(i)^{2}[\operatorname{Im} z]^{2}=[\operatorname{Re} z]^{2}+[\operatorname{Im} z]^{2} \geq 0
$$

where the last equality shows that the magnitude is positive (except when $z=0$).
Basic rule: if you need to make something real, multiply by its complex conjugate.
2. Rationalizing: We can apply this rule to "rationalize" a complex number such as $z=$ $1 /(a+b i)$. Make the denominator real by multiplying by the complex conjugate on top and bottom:

$$
\frac{1}{a+b i} \cdot \frac{a-b i}{a-b i}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}+i \frac{-b}{a^{2}+b^{2}}
$$

so $\operatorname{Re} z=a /\left(a^{2}+b^{2}\right)$ and $\operatorname{Im} z=-b /\left(a^{2}+b^{2}\right)$.

3. The Complex $x-y$ Plane

- Rectangular form: Any complex number z can be uniquely represented as a point in the $x-y$ plane, where the x-coordinate is $\operatorname{Re} z$ and the y-coordinate is $\operatorname{Im} z$ (see figure).
- You can think of i as a unit vector in the "imaginary" (y) direction.
- The magnitude of z is just the length of the vector from the origin.
- Polar form: We can also write z in polar form as:

$$
z=r e^{i \theta}=r \cos \theta+i r \sin \theta,
$$

where r and θ are real and equal to the length and angle of the vector.

- The complex conjugate of $z=r e^{i \theta}$ is $z^{*}=r e^{-i \theta}$.
- Thus the magnitude is $|z|=\sqrt{z z^{*}}=r$.
- Rationalizing:

$$
\frac{1}{r e^{i \theta}}=\frac{1}{r} e^{-i \theta}
$$

4. Multiplying Complex Numbers

- Multiplication is distributive: $(a+b i) \times(c+d i)=(a c-b d)+i(a d+b c)$.
- In polar form, we multiply the r 's and add the θ 's: if $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then $z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$.

5. Euler's Theorem and other Goodies:

- From the polar form, we have:

$$
e^{i \theta}=\cos \theta+i \sin \theta .
$$

- Special values:

$$
e^{2 \pi i}=1 \quad e^{i \pi}=-1 \quad e^{i \pi / 2}=i \quad e^{i \pi / 4}=1 / \sqrt{2}+i / \sqrt{2}
$$

- We can rewrite sin and cos:

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

which can be very useful, since it is generally easier to work with exponentials then trigonometric functions.

- DeMoivre's Theorem:

$$
z^{n}=\left(r e^{i \theta}\right)^{n}=r^{n} e^{i n \theta}=r^{n}[\cos (n \theta)+i \sin (n \theta)] .
$$

We can also write the theorem in the form:

$$
z^{1 / n}=r^{1 / n}[\cos (\theta / n)+i \sin (\theta / n)],
$$

which is great for taking the square root, cube root, etc. of complex numbers!

